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ABSTRACT: Global models are frequently used for tropical cyclone (TC) prediction and climate projections but have
biases in their representation of TCs that are not fully understood. The objective of this work is to assess how well and how
robustly physical processes that are important for TC development are represented in modern reanalysis products and to
consider whether reanalyses can serve as an observationally constrained reference against which model representation of
these physical processes can be evaluated. Differences in the representation of large-scale environmental variables relevant
to TC development do not readily explain the spread in TC climatologies across climate models, as found in prior work, or
across reanalysis datasets, as shown here. This motivates the use of process-oriented diagnostics that focus on how convec-
tion, moisture, clouds, and related processes are coupled and can be used to identify areas to target for model improve-
ment. Using the column-integrated moist static energy (MSE) variance budget, we analyze radiative and surface flux
feedbacks across five different reanalyses. We construct an intensity-bin composite of the MSE variance budget to compare
storms of similar intensity. Our results point to some fundamental differences across reanalyses in how they represent
MSE variance and surface flux and radiative feedbacks in TCs, which could contribute to differences across reanalyses in
how they represent TCs, but other factors also likely contribute. Any future work that evaluates these diagnostics
in GCMs against reanalyses should do so cautiously, and efforts should be undertaken to provide a true observational
estimate of these processes.
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1. Introduction

Tropical cyclones (TCs) have significant social, economic,
and infrastructural impacts on communities around the world
each year, heightening the importance of their accurate repre-
sentation in global models. Simulation of TCs in general
circulation models (GCMs) has made tremendous strides in
the last few decades, with improved performance in GCMs
(Camargo and Wing 2016). However, there are still biases
in these models (Walsh et al. 2016; Roberts et al. 2020). For
example, there are often too few storms simulated in the
Atlantic and too many in the Indian Ocean (Camargo 2013;
Roberts et al. 2020). Simulated TCs are also typically too
weak compared to real-world storms (Shaevitz et al. 2014).
Prior research has shown that higher resolution improves the

fidelity of the simulated TC climatology, including the number
of TCs and their structure, rainfall, and intensity (W. Zhang
et al. 2021; Vidale et al. 2021; Roberts et al. 2020; Manganello
et al. 2012; Wehner et al. 2014; Murakami et al. 2015). For ex-
ample, Moon et al. (2020b) found that GCMs with finer hori-
zontal resolutions simulate more realistic radii of maximum
winds and, therefore, inner-core structures. However, even
across GCMs at the same resolution, fundamental differences
remain in the way TCs are simulated (Roberts et al. 2015;
Shaevitz et al. 2014; Kim et al. 2018; Moon et al. 2020b; Wing
et al. 2019; Russotto et al. 2022).

TCs evolve via interactions with their environment and are
tightly coupled to convective processes; thus, the representa-
tion of these processes in models influences TC simulation. In
particular, TC simulation is sensitive to the model dynamical
core and convective and cloud microphysics parameteriza-
tions (Reed and Jablonowski 2011; Murakami et al. 2012;
Zhao et al. 2012; Kim et al. 2012; Reed et al. 2015; Duvel et al.
2017; Russotto et al. 2022). Variation in the large-scale envi-
ronment, as captured by genesis potential indices (Emanuel
and Nolan 2004; Emanuel 2010; Tippett et al. 2011), has
helped explain TC variability on intraseasonal, interannual,
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and climate change time scales (Camargo et al. 2007a,b, 2014,
2016). However, Camargo et al. (2020) showed that the inter-
model spread in the historical TC climatology across models
is not explained by differences in the simulated large-scale en-
vironment. Therefore, other processes must determine the cli-
matology of simulated TCs in GCMs of a given resolution.

Process-oriented diagnostics (PODs) are used to characterize
a specific physical process, often associated with model physics
and numerics, that is related to the ability to simulate an ob-
served phenomenon, such as a TC (Maloney et al. 2019). This
approach goes beyond simply evaluating the number and inten-
sity of TCs and diagnoses the underlying mechanisms relevant
to the storm development process. PODs inform which
areas to target for model improvement and can be com-
pared to observations, revealing whether simulated TC de-
velopment occurs for the right physical reasons. Kim et al.
(2018) was the first study to develop a POD for TCs in climate
models. They used a spatial composite approach to isolate TC
kinematic and thermodynamic structures during intensifica-
tion, focusing on how convection, moisture, clouds, and re-
lated processes are coupled at the grid scale. Wing et al. (2019)
further quantified these processes by adapting the column-
integrated moist static energy (MSE) variance budget, origi-
nally developed for studies of convective self-aggregation,
for GCM simulation of TCs. Application of these diagnos-
tics to historical GCM simulations revealed that surface flux
feedbacks are responsible for part of the intermodel spread
in TC intensity and that GCMs that produce more intense
TCs also produce a greater amount of precipitation in the
TC inner core (Kim et al. 2018; Wing et al. 2019; Moon et al.
2020b). Wing et al. (2019) and B. Zhang et al. (2021) also
found that radiative feedbacks in GCMs are relatively more
important to TC development in weak storms. However, in
comparison to satellite observations, most GCMs overesti-
mate the amount of inner-core precipitation. This suggests
that in order to simulate TCs of a certain intensity, GCMs
need to develop large rain rates (and thus diabatic heating)
in the inner core, perhaps to compensate for deficiencies in
their representation of other processes (Vannière et al.
2020; Moon et al. 2022). Application of these diagnostics
may aid in model development by identifying processes rel-
evant for TCs that may be misrepresented; for example, if
the surface flux feedback is diagnosed to be too weak, a
model developer might reexamine the dependence of sur-
face fluxes on wind speed in their boundary layer scheme.

The primary objective of this paper is to extend the work of
Wing et al. (2019) to assess how some processes that are impor-
tant for TC development are represented in modern reanalysis
products and to consider whether reanalysis can serve as an
observationally constrained reference for the MSE variance
budget diagnostic for TCs against which GCMs could be
evaluated.

Reanalyses employ numerical weather prediction models
with assimilated observations to provide a self-consistent esti-
mate of the atmospheric state without temporal and spatial
gaps (Parker 2016). Reanalyses are only partially constrained
by observations but are the only dataset that is able to provide
all the necessary variables, with sufficient temporal and spatial

resolution, to perform a full calculation of the MSE variance
budget around TCs. However, it is important to note that re-
analysis representation of TCs is, itself, subject to errors and
biases. While reanalyses can reproduce most of the features
of the observed TC climatology, as well as realistic variability
on interannual and intraseasonal time scales, they typically
underestimate TC intensity and exhibit TC position errors
compared to observed best-track data (Schenkel and Hart
2012; Murakami 2014; Hodges et al. 2017; Kim et al. 2021).
Reanalyses also misrepresent TC outer size and structure, the
relationship between intensity and outer size, and the TC life
cycle (Schenkel and Hart 2012; Schenkel et al. 2017; Bian et al.
2021), as well as differ from observations in their representa-
tion of physical processes such as the precipitation gener-
ated by TCs (Jones et al. 2021). These discrepancies may be
caused by coarse horizontal grid spacing, parameterization
of subgrid-scale processes, data assimilation schemes, vortex
relocation or initialization techniques utilized by each data-
set, or other model details. Regardless of resolution, reanalyses
struggle to find a middle ground between simulating enough
storms compared to observations and simulating them at the
proper intensity, which is likely associated with the individual
models’ physics (Aarons et al. 2021). Reanalyses also may ei-
ther miss storms that happened in the real world (especially
weak storms) or simulate artificial storms that did not happen
in the real world (Hodges et al. 2003; Zarzycki et al. 2021).
These biases motivate our use of five different modern reanaly-
sis datasets, as no single dataset represents truth, and we assess
how well the reanalyses agree on the representation of the
TC MSE variance budget to contextualize any future GCM-
reanalysis comparisons.

A secondary objective of this work is to investigate whether
differences in the representation of TCs across reanalyses can
be explained by the storm-scale physical processes captured by
the MSE variance budget or by the climatology of the large-
scale environment.While the MSE variance budget was devel-
oped as a process-oriented diagnostic for climate models
(Wing et al. 2019), it is plausible to consider whether it also
explains differences in TC representation across reanalyses.
In addition, while large-scale environmental factors do not ex-
plain differences in TCs across GCMs (Camargo et al. 2020),
it has not yet been shown whether this is true for reanalyses
as well. Other factors, such as how synoptic-scale environ-
ments impact storm-level processes (McBride and Zehr 1981;
Elsberry et al. 1988; Jones 1995; DeMaria 1996; Hill and
Lackmann 2009), may also influence reanalysis representa-
tion of TCs (Slocum et al. 2022) but are not examined here.

The remainder of this paper is structured as follows: section 2
describes the datasets used and analysis methods. To provide
context and explore a possible reason for spread in the TC
climatology across reanalyses, section 3 compares aspects of
the climatological large-scale environment relevant to TCs.
Section 4 presents the MSE variance budget diagnostics, their
spread across reanalyses, and their relationship to aspects of
the TC climatology. The results and the implications for
their use as a process-oriented diagnostic are summarized in
section 5. Several sensitivity tests are presented in appendixes A
and B.
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2. Data and methods

a. Data

1) REANALYSIS DATASETS

Five reanalysis datasets are used in this study: the National
Aeronautics and Space Administration (NASA) Modern-
Era Retrospective Analysis for Research and Applications
version 2 (MERRA-2; Gelaro et al. 2017), the National Cen-
ters for Environmental Prediction (NCEP) Climate Forecast
System Reanalysis (CFSR; Saha et al. 2010c, 2014), the
Japanese 55-year Reanalysis (JRA-55; Kobayashi et al. 2015),
the fifth major global reanalysis produced by the European
Centre for Medium-Range Weather Forecasts (ECMWF)
(ERA5; Hersbach et al. 2020), and the ECMWF interim rean-
alysis (ERA-Interim; Dee et al. 2011). Table 1 describes the
characteristics of each dataset; Fujiwara et al. (2017) also pro-
vides a useful review. ERA-Interim output is provided on a
Gaussian grid, but since the latitude and longitude spacings
are constant within our analysis region in the tropics, we
treat it as a regular grid with 0.70188 3 0.70318 spacing. Our
analysis considers 1980–2016. For analysis of the large-scale
environment [sections 2b(1) and 3], we interpolate all fields
to a common 28 grid for comparison. For the MSE
variance budget [sections 2b(2) and 4], we consider each
reanalysis on its own grid. The native model resolution

JRA-55 data are provided on native hybrid sigma–pressure
model levels, so we first interpolate it to pressure levels; for
all other reanalyses, we use the data provided on pressure
levels. We test the sensitivity of the MSE variance budget in
JRA-55 to using 1.258 3 1.258 output data rather than the
native model resolution data (gridded to 0.568 3 0.568) in
appendix A.

In general, reanalyses use one of two data assimilation (DA)
schemes: three-dimensional variational assimilation (3DVar)
and four-dimensional variational assimilation (4DVar). 3DVar
assimilates observations by assuming that all observations used
within the analysis period were recorded at the initialization
time of the model and, thus, does not account for temporal vari-
ability other than through sequential assimilation of observa-
tions. On the other hand, 4DVar does account for different
observation times and allows for a flow-dependent influence of
observations to constrain the model (Thépaut et al. 1996; Dee
et al. 2011). This leads to lower error propagation during fore-
cast generation than does 3DVar, and so is generally the data
assimilation scheme used by more recent reanalysis products.
We also note that MERRA-2 utilizes an incremental analysis up-
date procedure (IAU), in which the analysis increments are ap-
plied gradually as a correction to the background state at each
time step rather than abruptly at the analysis time (Gelaro et al.
2017; Bloom et al. 1996). This may provide better consistency

TABLE 1. Summary of the reanalysis datasets and their model characteristics, including resolution (latitude 3 longitude), data
assimilation scheme (DA), any TC preprocessing that is performed prior to data assimilation, and relevant parameterizations. Model
resolution is shown based on the model spectral resolution, with the approximate horizontal resolution in parentheses (all use
spectral dynamical cores except for MERRA-2, which uses a finite-volume dynamical core). Note that CFSR is a coupled
atmosphere–ocean–sea ice reanalysis system.

Reanalysis Model Model resolution Output resolution DA Preprocessing

MERRA-2 GEOS 5.12.4 (2015) 0.508 3 0.6258 0.508 3 0.6258 3DVar Vortex relocation
72 levels IAU

CFSR NCEP CFS (2007) T382 (;0.348) 0.508 3 0.508 3DVar Vortex relocation
64 levels

JRA-55 JMA GSM (2009) T319 (;0.508) 0.568 3 0.568 4DVar TC wind-profile retrieval
60 levels

ERA5 IFS Cycle 41r2 (2016) T639 (;0.288) 0.258 3 0.258 4DVar None
137 levels

ERA-Interim IFS Cycle 31r2 (2007) T255 (;0.548) 0.70188 3 0.70318 4DVar None
60 levels

Reanalysis
Convective

parameterization Cloud scheme Radiation scheme

MERRA-2 Moorthi and Suarez
(1992)

Bacmeister et al. (2006) Chou and Suarez (1999)

Chou et al. (2001)
CFSR Tiedtke (1983) Xu and Randall (1996) Clough et al. (2005)

Moorthi et al. (2001) Zhao and Carr (1997)
JRA-55 Arakawa and Schubert

(1974)
Kawai and Inoue (2006) Briegleb (1992); Chou

et al. (2001)
Xie and Zhang (2000) Freidenreich and

Ramaswamy (1999)
ERA5 Tiedtke (1989) Tiedtke (1993) Mlawer et al. (1997)
ERA-Interim Tiedtke (1989) Tiedtke (1993) Fouquart and

Bonnel (1980)
Mlawer et al. (1997)
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among the different fields. However, we utilize MERRA-2’s
analysis (ANA) products, rather than the assimilation (ASM)
products that are the result of applying the IAU procedure, be-
cause the former are more consistent with the analyses produced
by other reanalysis systems. Three of the reanalyses feature
some sort of preprocessing method to aid in TC tracking and
representation efforts. Both CFSR (Saha et al. 2010c) and
MERRA-2 (McCarty et al. 2016) have vortex relocation, which
is when TC vortices are moved from their initial reanalysis-
determined location to the best track position provided by the
National Hurricane Center (NHC) and Joint Typhoon Warning
Center (JTWC) prior to data assimilation of storm observations.
JRA-55 is unique in that it generates synthetic TC wind profiles
from historical observations and assimilates them into the reanal-
ysis as if they are dropsonde observations for TCs with 10-m
wind speeds greater than 34 kt (Kobayashi et al. 2015), where
1 kt ’ 0.514 m s21. Both of these methods of TC preprocessing
likely aid in the accuracy of TC simulation (Schenkel and Hart
2012). In addition to those discussed here, there are other differ-
ences between reanalyses, such as the choice of prognostic varia-
bles, form of model equations, and numerical methods. For
example, while ERA5 and ERA-Interim use the same modeling
system, one of several differences between them is a change
in the prognostic equations for moisture variables. While we
have noted some of the important characteristics of the dif-
ferent reanalyses here for context, as discussed in section 5,
we do not attempt to attribute our results to particular com-
ponents of the reanalysis configurations, since the sheer
number of differences makes it impossible to isolate each of
their influences without doing targeted sensitivity experi-
ments with individual models.

What we refer to as CFSR is actually a combination of
CFSR (Saha et al. 2010c) from 1979 to 2010 and then CFSv2
(Saha et al. 2014) from 2011 to 2016, where the latter provides
data using the same model that extends the CFSR reanalysis
beyond December 2010. There are a few select dates during
our analysis period for which CFSR is missing data and are
thus ignored: 15 May 2013, 16 June 2013, 17 June 2013,
29 March 2016, 31 March 2016, 1 April 2016, 2 April 2016,
and 17 December 2016. In addition, CFSR is known to exhibit
discontinuities in the mass field, which may lead to potential
imbalance with the wind field (Schenkel and Hart 2012).
Other reanalyses have other known data issues: there some
instances of nonphysical 10-m wind speeds exceeding 100 m s21

in ERA5 (Hersbach et al. 2020) and a few TCs in JRA-55 that
are misrepresented as anticyclonic vortices before 1987, mostly
in the North Atlantic (JMA 2020). These instances are not in-
cluded in our analyses. Finally, there are also a few isolated
instances for which an ERA5 variable used in our calculations
was corrupted: specific humidity at 1200 UTC 2 May 1980,
and sensible heat flux at 0600 UTC 8 December 1990 and
1200 UTC 10 July 1999. We became aware of these corrupt
times after the majority of our analysis had been completed;
therefore, we left them incorporated in the analysis. These
three corrupt data points are not expected to affect the re-
sults, due to the large sample size over which we take compo-
sites, as discussed later in this section.

2) TC TRACKS

We use TC tracks from Zarzycki et al. (2021), which are de-
rived from an objective tracking algorithm, TempestExtremes,
applied to reanalyses. TempestExtremes identifies a TC center
by finding a mean sea level pressure that is surrounded within
58 by a closed contour that is 2 hPa higher. Then, it eliminates
the tracking of cold-core cyclones by requiring a 300–500-hPa
geopotential thickness maximum to be located horizontally
within 18 of the identified TC center (Ullrich and Zarzycki
2017; Zarzycki et al. 2017). According to Zarzycki et al.
(2021), JRA-55 has the best statistics for representing TCs that
also exist in the best track data. Conversely, MERRA-2 has
the highest false alarm rate, which means it tracked the most
TCs with no official record in the postseason analysis. The rep-
resentation of TCs in MERRA-2 is discussed in more detail by
Aarons et al. (2021).

Figure 1 shows the TCs tracked by TempestExtremes in the
reanalysis datasets; the tracks in Fig. 1f are from the Interna-
tional Best Track Archive for Climate Stewardship (IBTrACS;
Knapp et al. 2010), which is considered the “actual” TC track
data from a postseason analysis. As noted by Kim et al.
(2021), MERRA-2 has a notable equatorward bias in its TC
track distribution, especially in the eastern Pacific and South-
ern Hemisphere. The reanalyses capture the general spatial
distribution of TCs but do not include every TC that happens
in reality, nor do they simulate them at the proper intensity
(Fig. 2; Murakami 2014; Hodges et al. 2017; Zarzycki et al.
2017; Aarons et al. 2021). This underperformance is a general
limitation of reanalyses that may imprint on our results. Of the
reanalyses, CFSR, MERRA-2, and JRA-55 simulate the stron-
gest storms, while ERA-Interim and ERA5 simulate weaker
storms, but none of the reanalyses capture the most intense
storms (.60 m s21) seen in observations. It is notable that the
reanalyses that simulate the strongest storms all have TC pre-
processing methods. ERA-Interim and ERA5 have similar in-
tensity probability density functions despite the much higher
resolution of ERA5. Since both are derived from versions of
the ECWMF model with similar subgrid-scale parameteriza-
tions, we might have expected that the higher resolution in
ERA5 would have resulted in a higher proportion of stronger
storms, though even 0.258 resolution is not high enough to ex-
pect to simulate category 4 and 5 storms on the Saffir–Simpson
hurricane wind scale (Moon et al. 2020a; Davis 2018; Walsh
et al. 2007).

b. Methodology

1) CLIMATOLOGICAL LARGE-SCALE ENVIRONMENT

We consider several TC-related, climatological, large-scale
environmental variables as possible sources of inter-reanalyses
spread in TC representation. All environmental fields are line-
arly interpolated to a common 28 grid for comparison and are
computed from monthly mean fields as climatologies from 1980
to 2016 averaged over the peak TC season: August–October in
the Northern Hemisphere and January–March in the Southern
Hemisphere. When we consider spatial averages of the environ-
mental fields, we average over ocean regions equatorward of
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308, excluding the South Atlantic and eastern South Pacific,
where there is minimal observed TC activity. As noted above,
genesis potential indices (Emanuel and Nolan 2004; Emanuel
2010; Tippett et al. 2011; Wang and Murakami 2020) capture as-
pects of the large-scale environment that are important for TCs.

We use the TC genesis index (TCGI), which is an empirical gen-
esis index following the formulation of Tippett et al. (2011) and
Camargo et al. (2014), in which the integrated value of TCGI
gives the predicted number of TCs by the index. It is based on a
Poisson regression fit for each of the reanalyses using their clima-
tological fields and the TC historical climatology for storms
whose lifetime maximum intensity is greater than or equal to
35 kt. In the main text, we show a version of TCGI that uses
column relative humidity as its humidity variable, but we
also consider a version of TCGI that uses saturation deficit
as its humidity variable as well as an alternate index, the
genesis potential index (GPI; Emanuel and Nolan 2004;
Camargo et al. 2007a) (Fig. S1 in the online supplemental
material). We also examine other individual thermodynamic
and dynamic environmental variables, which include the fol-
lowing components of genesis indices:

• Potential intensity (PI): the theoretical maximum intensity a
TC can reach given the thermodynamic environment (Emanuel
1988; Bister and Emanuel 2002), using reversible ascent
from the lowest level, ck/cd 5 0.9, no dissipative heating,
and a 0.8 reduction factor to convert the gradient wind to
the 10-m wind.

• Column relative humidity: the ratio of the column inte-
grated water vapor path (w) and the column saturated wa-
ter vapor path (ws), or w/ws, following the definition of
Bretherton et al. (2004).

FIG. 1. (a)–(e) Difference between the track density climatology per year from TempestExtremes for the reanalysis datasets and IBTrACS.
(f) IBTrACS track density (tropical storm intensity and above) for the period 1980–2016.

FIG. 2. Distribution of lifetime maximum wind speed for TCs
included in our composites in reanalyses and observations
(IBTrACS; Knapp et al. 2010) from 1980 to 2016.
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• Saturation deficit integrated across the column: the differ-
ence between the column integrated water vapor path and
the column saturated water vapor path (w 2 ws).

• Vertical wind shear between 200 and 850 hPa.
• Relative humidity at 600 hPa.
• Absolute vorticity at 850 hPa.
• Vertical motion (omega) at 500 hPa.

We additionally consider outgoing longwave radiation
(OLR) since the MSE variance budget [section 2b(2)] con-
siders radiative feedbacks. While genesis indices are de-
signed to predict the number of TCs that form, they are also
used as a measure of the general favorability of the environ-
ment for TC development (including both formation and in-
tensification), which is the context in which we use them
here. We thus relate the genesis indices and large-scale envi-
ronmental fields to two bulk metrics of TC activity: 1) the
climatological mean number of TCs in the peak season
(NTC; August–October for the Northern Hemisphere,
January–March for the Southern Hemisphere) and 2) accu-
mulated cyclone energy (ACE; Bell et al. 2000) in the peak
season. ACE is defined as ∑y2 for all 6-hourly TC snapshots,
where y is the maximum sustained 10-m wind speed, and is
thus a combination of the number of TCs, their intensity, and
their duration.

2) MOIST STATIC ENERGY VARIANCE BUDGET

The column-integrated MSE ĥ is given by

ĥ 5
1
g

�pb

pt

(cpT 1 gz 1 Lyq)dp, (1)

where pt is the pressure at the top of the atmospheric col-
umn, pb is the pressure at the bottom of the column, q is the
water vapor mixing ratio, and g, cp, T, z, and Ly have their
conventional meanings. The circumflex/hat symbol (̂) indi-
cates integration throughout the entire atmospheric col-
umn. Moist static energy is approximately conserved under
moist adiabatic displacements, and its integral is unchanged
by convection if ice processes are ignored. We follow Wing
et al. (2019) and integrate over a column with fixed upper
and lower bounds of 1 and 925 hPa. This is important so
that the same amount of atmospheric mass is integrated
over, regardless of the surface pressure of the TC. Wing
et al. (2019) noted that an alternate approach is to define a
budget for column-integrated MSE per column mass, but
we choose the similar and more straightforward option of
fixing the pressure bounds. Most TC intensities across each
dataset do not fall below 925 hPa (less than 0.5% of all TC
snapshots), so we choose this as pb so that the column inte-
gral over the weaker storms is not starting too far above the
surface. The very small fraction of snapshots that have sur-
face pressures below 925 hPa would have missing (or inter-
polated) data in the lowest few levels, which is not expected
to impact our results. We note that application of this meth-
odology to other models, which may simulate stronger TCs,
may need to consider a different pb [e.g., Wing et al. (2019)
used 920 hPa].

The budget for ĥ is given by

­ĥ
­t

5 Fk 1 NL 1 NS 2 û ?=h, (2)

where Fk is the surface enthalpy flux (the combination of sen-
sible and latent heat fluxes), NL is the column longwave radia-
tive flux convergence, NS is the column shortwave radiative
flux convergence, and2û ?=h is the column-integrated advec-
tion. Each term on the right is a source or sink of ĥ. The term
ĥ is calculated using the column integral described above, us-
ing instantaneous 3D output at the time of the TC snapshot,
and ­ĥ/­t is computed using a centered finite difference. The
advection term is difficult to calculate accurately from avail-
able output, so it is often considered as a residual from the
rest of the budget. However, this residual would include more
than just the advective term (i.e., the analysis increment and
possible imbalances in the budget), so we do not consider it
here and instead focus on the diabatic terms. We caution that
moist static energy budgets in reanalyses often have imbalan-
ces on the order of the terms themselves (e.g., Kiranmayi and
Maloney 2011), since reanalyses do not conserve mass or en-
ergy (Chiodo and Haimberger 2010; Gelaro et al. 2017).
While the individual source terms have been shown to be sim-
ilar compared to estimates from sounding arrays in some re-
analyses (e.g., Sobel et al. 2014), it is important to note the
inherent uncertainty in using reanalyses to calculate such
budgets, which may imprint on our results. All terms are com-
puted for each grid point (on each reanalysis’s own grid) in a
108 3 108 box centered around a TC for each snapshot follow-
ing its track from TempestExtremes, following Wing et al.
(2019). We calculate each of the diabatic flux terms in Eq. (2)
as an average centered on the times matching the Tempest-
Extremes tracks for each dataset. To accomplish this, some
manipulation of the data was required based on the availabil-
ity of the radiative and surface fluxes for each reanalysis. For
example, the ERA-Interim fluxes were provided as accumula-
tions measured in joules per square meter in 3-h increments
from 0000 UTC, so we converted them to averages with units
of watts per square meter and centered them around the de-
sired 6-hourly increments at 0000, 0600, 1200, and 1800 UTC
to match the TempestExtremes times. We ignore grid points
with more than 20% of land as well as grid points poleward of
308 latitude, following prior work (Wing et al. 2019), to focus
on the region in which most TCs are found and on the struc-
tures of TCs in the tropics. This has the effect of excluding
most subtropical storms and storms undergoing extratropical
transition, though we do not specifically filter based on the
storm classification.

Once the data are extracted in a 108 box centered around
each TC snapshot, we calculate the anomalies from the co-
sine of the latitude-weighted box average of each term. This
size box is a compromise between capturing both the TC
and its environment and excluding other disturbances and
other TCs (Frank 1982; Krouse and Sobel 2010). We test the
sensitivity of the results to box size in appendix B. We then
compute the budget of the spatial variance of ĥ, which is
given by
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The primes indicate anomalies from the box averages of each
individual term from Eq. (2). Equation (3) will be referred to
as the MSE variance budget throughout the rest of this paper.
Each term in the MSE variance budget contributes to the ten-
dency of MSE variance, where, as the spatial variance of ĥ in-
creases, the moist regions of the 108 3 108 box following a TC
get moister and the dry regions get drier. ĥ

′
F′
k is the surface

flux feedback, ĥ
′
N′

L is the longwave feedback, and ĥ
′
N′

S is the
shortwave feedback, also referred to as h′SEF′, h′LW′, and
h′SW′, respectively. We focus on these three diabatic feed-
back terms as sources and sinks of MSE variance and do not
consider the advection term of Eq. (3). In this regard, we do
not compute a closed budget but rather compare the diabatic
feedbacks across reanalyses. The advection term, as well as analy-
sis tendencies from the data assimilation, also likely contribute to
the evolution of MSE variance in reanalyses. But the diabatic
feedbacks, in the context of the MSE variance budget, are consid-
ered to be “process diagnostics,” as they represent physical mech-
anisms relevant to TC development, and thus it is still informative
to consider them in isolation as metrics for those processes.

3) INTENSITY-BIN COMPOSITES

To use the diabatic feedbacks in the MSE variance budget
described in section 2b(2) as process diagnostics, we construct
composites over snapshots of the same TC intensity, following
Wing et al. (2019). While Wing et al. (2019) also considered
composites relative to the time of lifetime maximum intensity
(LMI), we do not show those composites here, as they reveal
qualitatively similar results. We bin each snapshot along a

TC’s track, up through the time of LMI into 3 m s21 incre-
ments of maximum near-surface wind speed. After the snap-
shots are individually binned, we can take the composite
average of the terms in Eq. (3) over each bin. This approach
allows us to compare storm snapshots of similar intensity. Fig-
ure 3a shows the number of individual snapshots across all
TCs filed into each 3 m s21 bin. From this plot, we can infer
that analyzing the terms in Eq. (3) in the intensity bins between
about 10 and 30 m s21 will provide a good sample size (thou-
sands of snapshots) over which to composite. When considering
composites of feedbacks averaged over the TC-following box
(section 4c), we follow Wing et al. (2019) and take the box aver-
age of the feedbacks over the innermost 58 3 58 around the TC
center, to focus on the contributions of the different feedbacks
near the TC center and of the strongest storms (those whose
LMI falls in the 75th percentile of all LMIs within each individual
dataset), as those storms experience substantial intensification
and are the ones for which the MSE variance budget is thought
to be the most relevant. Note that the feedbacks are still calcu-
lated from anomalies with respect to the full 108 3 108 box;
we are just averaging the feedbacks over a smaller segment of
the box. While considering only the strongest storms reduces the
sample size in our composites, there are still thousands of sam-
ples in the bins between 10 and 30 m s21 (Fig. 3b). Averages
over the full 108 3 108 box and over all storms reveal qualita-
tively similar behavior (see Figs. S8 and S9).

3. Large-scale environment

a. Climatological mean reanalysis environments

As shown in section 2, the TC climatology including both
the number of TCs and their intensity distribution differs

FIG. 3. Comparison of the snapshot sample-size distribution for each intensity bin. Each reanalysis is represented
by a different color. (a) Result when all storms from each dataset are included in the composites. (b) The distribution
when we restrict the snapshots to only storms whose LMI falls into the 75th percentile of all LMIs across all five
reanalyses.
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across reanalyses. One possible cause for this discrepancy is
that large-scale environmental variables that are favorable to
TC development are represented differently across reanaly-
ses’ mean states. The inter-reanalysis mean TCGI captures
the observed spatial pattern of TCs (Fig. 4), but there are dif-
ferences across reanalyses. For example, MERRA-2 and

CFSR depict lower values of TCGI in the eastern Pacific
while ERA-Interim, ERA5, and JRA-55 have higher values.
This suggests that the environment is more favorable for TC
development in the eastern Pacific in the latter three reanaly-
ses. Other versions of genesis indices look similar (Fig. S1).
There are also differences in individual components of the

FIG. 4. Climatological mean environmental fields, averaged over 1980–2016 and August–October in the Northern Hemisphere and
January–March in the Southern Hemisphere. (bottom) Mean across all reanalyses for (left to right) PI (m s21), column relative humidity
(CRH), 850–200-hPa shear (m s21), and the TCGI using CRH. (remaining rows) Difference of each reanalysis from the mean across all
reanalyses.
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genesis indices; for example, ERA-Interim and JRA-55
have uniformly lower column relative humidity than the inter-
reanalysis mean, and CFSR has lower PI (Fig. 4). There is
more spatial variability in the differences of vertical wind
shear from the inter-reanalysis mean, which reflects differ-
ences in atmospheric circulation patterns. The variability
across reanalyses in saturation deficit and relative humidity
at 600 hPa is similar to that in column relative humidity
(Fig. S1). The inter-reanalysis mean OLR depicts regions of
deep convection in the intertropical convergence zone
(ITCZ) and western Pacific warm pool (low values of OLR)
and strong cooling to space in the dry subtropical regions
(Fig. S2). Differences in OLR across reanalysis reflect both
shifts in the location of the ITCZ and differences in radiative
cooling; for example, MERRA-2 generally has much lower
values of OLR, whereas JRA-55 generally has larger values.
The mean-state 850-hPa vorticity and 500-hPa omega are sim-
ilar across reanalyses (not shown). Relative to the mean val-
ues, hemispheric-averaged saturation deficit has the largest
spread across reanalyses, whereas vertical wind shear has the
lowest spread. The differences in these TC-relevant, large-
scale environmental variables across reanalyses are perhaps
not surprising given that some datasets have known biases in
certain variables. For example, there are known stratospheric
temperature biases in ERA-Interim and ERA5 (Hersbach
et al. 2020; Simmons 2020) and a cold bias below 925 hPa in
ERA5 that influences the convective instability (Slocum et al.
2022); this could contribute to ERA5’s high bias in column rela-
tive humidity. However, despite the differences, the climatologi-
cal large-scale environments represented by reanalyses are much
more similar to each other than the environments simulated by
GCMs that are unconstrained by observations (Camargo et al.
2020).

b. Relationship with TC climatology

Despite their differences, the climatological large-scale en-
vironments do not have a consistent relationship with climato-
logical TC activity across reanalyses. While it is difficult to
assess statistical significance with only five datasets, there is a
tendency for reanalyses with greater average relative humid-
ity at 600 hPa to simulate more TCs and higher ACE, though
this is not universally true and is not found in the other
humidity-related variables (Figs. 5a–c and 6a–c). In some cases
(i.e., shear, vorticity, and omega), the relationships between the
environmental variable and NTC or ACE are different in the
Northern versus Southern Hemisphere (Figs. 5e–g and 6e–g).
There are also some relationships that are not physically consis-
tent: higher potential intensity and lower shear appear to be as-
sociated with lower ACE in the Northern Hemisphere, which is
the opposite of expectations (Figs. 5d,e and 6d,e). Reanalyses
with more TCs in the Southern Hemisphere tend to have lower
average values of OLR, which may reflect, overall, more deep
convective activity in those datasets (Fig. 5h). Overall, discrep-
ancies in the climatological large-scale environments do not
clearly explain the differences in TC climatologies across rean-
alyses, nor does model resolution (higher resolution reanalyses
tend to have fewer storms, which is opposite of expectations;

see Fig. S3). This conclusion is qualitatively unchanged if indi-
vidual basins, such as the North Atlantic, western North Pacific,
or South Pacific, are considered rather than whole hemispheres
(not shown).

These results emphasize that simply considering mean-state
variables is not sufficient to explain differences in the TC cli-
matology across reanalyses, which motivates considering the
physical processes of TC development. This could include
how synoptic-scale environments impact storm-level pro-
cesses; indeed, recent work found that kinematic and thermo-
dynamic variables in the TC environment are biased low in
ERA5 relative to dropsonde data (Slocum et al. 2022). In this
study though, we utilize diagnostics that focus on storm-scale
processes related to how convection, moisture, clouds, and
circulation are coupled. The analyses to follow that utilize the
MSE variance budget reflect processes occurring at the con-
vective scale within the storm as well as those in the storm’s
surrounding environment.

4. MSE variance budget

First, we present the spatial structure, magnitude, and inten-
sity dependence of the MSE variance budget across the reanal-
ysis datasets and examine what features the reanalyses agree
on and where the reanalyses differ. We then attempt to relate
the diabatic feedbacks in the reanalyses to aspects of their TC
climatologies (i.e., mean TC intensity, NTC, and ACE).

a. 2D spatial structure

The 2D spatial structure of the MSE and diabatic feed-
backs, shown at each grid point in the 108 3 108 box following
the TCs, depicts how each reanalysis represents the spatial
structure of TCs. As a representative example, we show here
the 24–27 m s21 bin (Fig. 7), but similar figures for other bins
are provided in the supplemental material (Figs. S4–S7). In
subsequent sections, we consider azimuthal and box averages
of the feedbacks across all intensity bins. The reanalyses gen-
erally depict similar spatial structures, with the exception of
ERA-Interim’s surface flux feedback term (second column,
bottom row of Fig. 7). CFSR and JRA-55 simulate the small-
est ĥ values in the center of the TC, even at storm snapshots
of similar intensity, which could indicate lower humidity or
weaker TC warm cores in those datasets. h′SEF′ is negative
near the center where surface fluxes are reduced due to
weaker winds. The area of negative h′SEF′ in the center is
much larger in ERA-Interim than other datasets, spanning
hundreds of kilometers. This feature imprints on both the box
and azimuthal average analyses (see sections 4b and 4c) to
such a degree that the average feedback becomes negative.
h′SEF′ is directly correlated to the strength of the wind speed,
so we consider a composite of the 10-m wind speed following
the same methodology as in section 2b(3). Fig. 8 reveals an in-
credibly broad 10-m wind field, in which the radius of maxi-
mum winds simulated by ERA-Interim is on the order of
hundreds of kilometers [also seen in Schenkel et al. (2017)].
The very large, nine-gridpoint area of weaker-than-average
wind speeds corresponds to an area of suppressed surface
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fluxes (a negative SEF anomaly). Since this is collocated with
the largest ĥ values (ĥ

′
. 0), it results in a negative h′SEF′.

h′LW′ is generally positive, due to reduced longwave cool-
ing in regions of deep convective clouds near the TC center,

and is largest in MERRA-2, JRA-55, and ERA5. The large
h′LW′ feedback in MERRA-2 (see also Fig. 9b) is consistent
with the results of Wing et al. (2019), who examined TCs
in the Goddard Earth Observing Systems (GEOS) model

FIG. 5. Scatterplot of the climatological NTCs and mean environmental fields averaged over ocean areas equator-
ward of 308. Each is accumulated or averaged, respectively, over August–October in the Northern Hemisphere
(circles) and January–March in the Southern Hemisphere (triangles). The error bars indicate the 5%–95% confidence
interval for NTCs and the environmental fields, assuming a standard normal distribution.
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(Rienecker et al. 2008; Molod et al. 2015), the same model
used in MERRA-2. h′SW′ is typically weakly positive, due to
enhanced shortwave heating in moist areas, except for in
ERA5, in which it is weakly negative. We speculate that this

could be due to a larger contribution from clouds (which gen-
erally reduce the atmospheric shortwave heating by blocking
solar radiation) in ERA5. h′SW′ generally is the smallest
magnitude of the diabatic feedbacks, whereas h′SEF′ is

FIG. 6. Scatterplot of the climatological mean ACE and mean environmental fields averaged over ocean areas equa-
torward of 308. Each is accumulated or averaged, respectively, over August–October in the Northern Hemisphere
(circles) and January–March in the Southern Hemisphere (triangles). The error bars indicate the 5%–95% confidence
interval for ACE and the environmental fields, assuming a standard normal distribution.
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FIG. 7. A 2D spatial view of composites for the 24–27 m s21 bin. Each row represents a different reanalysis. All terms are plotted as a
function of degrees from the composited TC center. (left) ĥ (J m22) and (remaining columns) Feedback terms in the MSE variance bud-
get (ĥ

′
F′
k, ĥ

′
N′

L, ĥ
′
N′

S, or h
′SEF′, h′LW′, and h′SW′, respectively, with units of J2 m24 s21). For the feedback terms, positive values indi-

cate a source of MSE variance, while negative values indicate an MSE variance sink.
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generally the largest and, thus, most important in this in-
tensity bin.

b. Azimuthal means

To compute the azimuthal mean from the 2D composites,
we interpolate the gridpoint data onto polar coordinates and
take the azimuthal average for a given radius out from the
center of the TC. Despite some similarities among datasets,
there are differences in the value and radial structure of the
feedbacks. Figure 9 shows that h′SEF′ is smallest, and some-
times negative, closest to the center of the storm and becomes
large and positive within 18 of the TC center. Since MSE
peaks at the center of the composite TCs (Fig. 7), the radial
structure of h′SEF′ is driven by the radial structure of the sur-
face enthalpy fluxes, which, in turn, is driven mostly by the ra-
dial structure of the surface wind field (Fig. 8). ERA-Interim
is an outlier, with a strong negative h′SEF′ for most of the

radii. We speculate that the negative h′SEF′ resulting from
the broad wind field (as discussed above) could contribute to
weaker storms in ERA-Interim (Fig. 3), since this reanalysis
is missing what is typically a strong positive feedback on TC
intensification. Some reanalyses simulate a stronger rate of
feedback increase with TC intensity than others. For example,
the ERA5 h′SEF′ magnitude increases with intensity at a
much higher rate than MERRA-2’s h′SEF′, denoted by the
vertical spacing between lines of different thickness in Fig. 9a.
h′SEF′ peaks at different radii (Fig. 9a) for each reanalysis,
which likely reflects differences in horizontal resolution and
resulting differences in the radius of maximum wind and the
structure of the wind field. Especially close to the center and
within the radius of maximum winds, h′SEF′ has a spread of
O(1010) J2 m24 s21 across the datasets in the upper intensity-
bin range, while h′LW′ and h′SW′ have a spread closer to
O(109) J2 m24 s21. For the radiative feedbacks in particular

FIG. 8. (a) Surface enthalpy flux and (b) 10-m wind speed composite for ERA-Interim in the 24–27 m s21 bin.

FIG. 9. Azimuthal averages of the intensity-bin composites of the MSE variance budget feedback terms. The different colors represent
each reanalysis and each line thickness is a different intensity bin for the (a) surface flux feedback, (b) longwave feedback, and (c) short-
wave feedback. Note the different y axes. The error bars indicate the 5%–95% confidence interval, assuming a standard normal
distribution.
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(Figs. 9b,c), the reanalyses exhibit different radial gradients,
that is, the rate of change with distance from the TC center.
MERRA-2 has the steepest radial gradient for h′LW′, while
CFSR has the shallowest. For h′SW′, ERA-Interim has the
steepest radial gradient, and CFSR has the shallowest. These
differences in the radial gradients of the feedback terms reflect
differences in how surface and radiative fluxes vary spatially rel-
ative to the variability of the MSE as well as the size of the
storms, the latter of which is influenced by horizontal resolution.
Consistent with Fig. 7, the azimuthal mean h′SW′ is negative in
ERA5, with a peak around 18 from the TC center. Finally, we
note that the azimuthal mean of each feedback asymptotically
approaches zero near 48 from the TC center, which implies that
the relevant processes causing differences in the feedbacks are
found mostly inside the TC, not the outer environment.

c. Box averages

Prior work has shown that the box-average MSE variance in-
creases with TC intensity in climate models (Wing et al. 2019);

here, we show that this relationship is also found in reanalyses
(Fig. 10a). As a storm increases in intensity, it moistens com-
pared to its surroundings, thus increasing the MSE variance
across the TC. The box-average MSE variance increases roughly
linearly with intensity, more than quadrupling in value between
the 10 and 40 m s21 intensity-bin composites (Fig. 10a). For a
given wind speed, there is a large spread in the values of MSE
variance simulated by each reanalysis, which could be due to dif-
ferences in the strength of the TC warm core, the moisture
within the TC, or the environmental moisture. For example, in
the 24–27 m s21 bin, the relative spread in the MSE variance,
which is defined as the range across reanalyses for a given inten-
sity bin divided by the inter-reanalysis mean for that bin, is 0.43.
This indicates that the range across reanalysis is ;40% of the
mean value. There are also different rates of increase of MSE
variance per increase in wind speed (slopes of lines in Fig. 10a).
JRA-55, ERA-Interim, and ERA5 have the largest rate of
change in variance for a given change in wind speed, whereas
CFSR has the smallest. The differences in these slopes reflect

FIG. 10. MSE variance budget feedback terms averaged over the innermost 58 3 58 of the box and composited over
the strongest storms (75th percentile of LMIs). Note the different y axes. The error bars indicate the 5%–95% confi-
dence interval, assuming a standard normal distribution.
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different relationships between MSE variance and TC intensity
in the different datasets.

As the mean wind speed increases, the values of each feed-
back also increases. This makes sense particularly for h′SEF′,
because the surface enthalpy flux is directly dependent on the
wind speed. As deep convection intensifies and the clouds
become more concentrated with increasing TC intensity, the
radiative feedbacks generally increase in magnitude as well.
The box average of h′SEF′ in ERA-Interim (Fig. 10b) is nega-
tive at all intensities and does not vary with intensity. JRA-55,
MERRA-2, and ERA5 have the largest box-average h′LW′

across most intensities, and the strongest increase with inten-
sity. ERA-Interim and CFSR exhibit a much weaker h′LW′
that does not change much with intensity. Consistent with
Figs. 7 and 9, ERA5 has a negative box-average h′SW′ at all
intensities that increases in magnitude as intensity increases.
Despite the agreement in their qualitative trends with inten-
sity, the actual value of each box-averaged feedback varies sta-
tistically significantly across the reanalyses for a given wind
speed. Note that the y axes for both h′LW′ and h′SW′ are not
the same as for h′SEF′ in Fig. 10, but the spread is still on the
order of 109 J2 m24 s21 for the midrange-intensity radiative
feedbacks. The relative spread is largest for h′SW′, with an
average of relative spread of 2.00 (indicating a range that is
twice as large as the inter-reanalysis mean) compared to 1.48
for h′LW′ and 1.36 for h′SEF′.

d. Normalized composites

As discussed above, the strength of the diabatic feedbacks
generally increases as TC intensity increases. This may be par-
tially driven by the increase in ĥ anomalies themselves with
intensity. Furthermore, as seen in Fig. 10a, at a given intensity
there is a fairly large spread in the value of the ĥ variance and
thus ĥ

′
anomalies across the reanalyses. This implies that

even though we are comparing storm snapshots of similar
strength, if a particular reanalysis happens to have greater ĥ
anomalies associated with a particular intensity, that may

contribute to larger feedbacks in that reanalysis for the same
intensity, as the feedbacks depend explicitly on ĥ

′
. To deter-

mine whether the different feedback magnitudes are a result
of differences in the physical processes or just different base-
line ĥ anomalies, and to better compare the feedback magni-
tudes across different intensities, we normalize the feedbacks
by dividing them by the domain mean ĥ variance of each
snapshot before taking the composites [following Wing and
Cronin (2016) and Wing et al. (2019)]. This approach scales
the feedbacks and allows a more direct comparison across dif-
ferent values of ĥ

′
.

The normalized feedbacks (Fig. 11) have units of days21,
representing h′SEF′, h′LW′, and h′SW′ as growth rates of ĥ
variance per day. h′SEF′ still increases with intensity even af-
ter being normalized by the variance, though not quite as
prominently as in Fig. 10b. On the other hand, the normalized
h′LW′ (Fig. 11b) either decreases or remains constant with
TC intensity. A decrease with intensity is most prominent in
ERA5, ERA-Interim, and CFSR, and is found in all reanaly-
ses when considering the average over the full 108 3 108 box
over all storms (Fig. S9). This implies that h′LW′ is most im-
portant for weaker storms and, in fact, for intensities below
;20 m s21, the total radiative feedback (sum of h′LW′ and
h′SW) is larger than h′SEF′. The normalized h′SW′ has the
largest relative spread in the 24–27 m s21 bin (2.87) compared
to normalized h′SEF′ and h′LW′ (2.12 and 1.79, respectively).
The normalized h′SEF′ feedback seems to cluster into two
groups of reanalyses: ERA-Interim and MERRA-2 have val-
ues that are notably lower at a given intensity and increase
with intensity at a slower rate than those in CFSR, ERA5,
and JRA-55. Overall, all three feedbacks are represented
differently in each reanalysis even when normalized by box-
average ĥ variance, indicating that these physical processes,
which are important to TC development, are not simulated
equivalently across reanalysis. This may contribute to the dif-
ferences in the distribution of TCs simulated across reanaly-
ses, which is explored next.

FIG. 11. MSE variance budget feedback terms normalized by the domain mean variance, averaged over the innermost 58 3 58 of
the box, and composited over the strongest storms (75th percentile of LMIs). Note the different y axes. The error bars indicate the
5%–95% confidence interval, assuming a standard normal distribution.
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e. Relationship with TC climatology

Here, we explore the relationship between the magnitudes
of the diabatic feedbacks across reanalyses and aspects of
their respective TC climatologies in an attempt to attribute
the differences in TC climatologies across reanalyses to their
representation of physical processes. This is the intended use
of a process-oriented diagnostic, though such diagnostics are
typically applied to compare a model to observations, not to
compare different observationally constrained datasets (i.e.,
reanalyses) to each other. Given that section 3 demonstrated
that differences in the representation of TCs in reanalyses are
not readily explained by their large-scale environments, and
that section 4 demonstrated that there are differences in the
radiative and surface flux feedbacks across reanalyses, it
seems plausible to try to apply the diagnostic to explain the
spread across reanalyses. To do so, we relate the average radi-
ative and surface fluxes within a given intensity bin (between
y lower and yupper) to four metrics of the TC climatology: the
average LMI across all storms, the climatological average
NTC, the climatological average ACE, and the percentage of
storms that reach intensities beyond the intensity bin under
consideration. This last quantity is computed as the ratio of
the number of storms with LMI greater than yupper to the
number of storms with LMI greater than y lower, since the for-
mer at some point must have passed through the bin defined
by y lower and yupper and then intensified beyond it.

Figure 12 shows the relationships for the nonnormalized and
normalized feedbacks averaged over the innermost 58 3 58 of
the box and composited over the strongest storms (75th percen-
tile of LMIs), for the 24–27 m s21 bin; other bins are shown in
Figs. S10–S14. There are not many clear relationships between
metrics of the TC climatology and the average radiative and
surface flux feedbacks, and it is difficult to assess statistical sig-
nificance with only five datasets to consider. The clearest rela-
tionship is that there tends to be a stronger longwave radiative
feedback in the 24–27 m s21 bin in reanalyses in which there is
a greater percentage of storms that intensify from 24 m s21 to
greater than 27 m s21. This indicates that if a particular reanaly-
sis has a stronger longwave feedback at a given intensity, it may
be more likely for the storms to intensify further. This relation-
ship is seen in Fig. 12 (see open circles in Fig. 12c,d, as well as in
Figs. S13 and S14), though CFSR is an exception to the relation-
ship. Other possible relationships include a tendency for there
to be higher surface flux feedbacks in reanalyses where more
storms intensify further in some bins (Fig. 12 and Fig. S13).
There do not appear to be consistent relationships between the
feedbacks in any bin and LMI, NTC, or ACE, though the lack
of relationship with NTC and ACE (which depends partially on
NTC) might be because here we are considering feedbacks
after the TC has already formed. Overall though, there is not a
particularly strong indication that the differences in the repre-
sentation of the TC climatology can be explained by differences
in the representation of radiative and surface flux feedbacks
across reanalyses. This suggests that the development and inten-
sification of TCs in reanalyses might be more related to their
analysis tendencies from the data assimilation, rather than phys-
ical process representation, though it could also mean that other

physical processes beyond those examined here need to be
considered.

5. Discussion and conclusions

We apply the column-integrated MSE variance budget, first
introduced by Wing and Emanuel (2014), and as first applied
to TCs in global models in Wing et al. (2019), to five global re-
analysis datasets to investigate their representation of physical
processes involved in TC development and to consider whether
reanalyses can serve as an observation-based reference for these
diagnostics. This effort is challenged by known deficiencies in
reanalysis representation of TCs, but no other dataset provides
all the necessary variables.

We first compare climatological large-scale environmental
variables associated with TCs as a possible source of spread
across reanalyses. The largest relative differences across all re-
analysis products occur in variables involving humidity, while
the spread is relatively smaller for dynamical variables (e.g.,
vertical wind shear, omega). However, differences in the cli-
matological large-scale environments do not readily explain
the inter-reanalysis spread in the TC climatology; physical pro-
cess representation at smaller scales must also be considered.

We use the MSE variance budget to diagnose surface flux
and longwave and shortwave radiative feedbacks in TCs,
which provides a measure of diabatic processes known to be
important to TC development. Our results reveal that there is
a large spread in the magnitude of these feedbacks, as well as
in the MSE variance itself, for a given TC intensity across the
reanalyses. All terms generally increase in magnitude as the
TC intensifies, but the spread in MSE variance at a given in-
tensity is ;40% of the value of the inter-reanalysis mean
value, and the MSE variance increases with intensity at differ-
ent rates. Even after normalizing by the box-average MSE
variance before compositing h′SEF′, h′LW′, and h′SW′

across the TC snapshots, the reanalyses still exhibit a large
spread in the values of each feedback, with average relative
spreads of 0.85, 1.72, and 2.15, respectively. The normalized
surface flux feedback still increases with TC intensity, but the
contribution from the normalized longwave and shortwave
feedbacks depend less on intensity. Reanalyses agree that the
radiative feedbacks have a greater relative contribution to TC
development in weak storms, and their sum is, in fact, greater
than the surface flux feedback at low intensities (roughly be-
low 20 m s21).

We conclude that reanalyses have substantial differences in-
grained in their representation of physical processes associated
with TC development, as captured by the MSE variance bud-
get. It is possible that this could contribute to the variability
across reanalyses in their representation of the TC climatology.
We found some suggestion that a stronger longwave radiative
feedback in a given intensity bin is associated with a higher per-
centage of storms that intensify further, consistent with the
growing body of literature on the importance of radiative feed-
backs for TC development (e.g., Wing 2022; Ruppert et al.
2020; B. Zhang et al. 2021; Wu et al. 2021, 2023). However, the
relationship between the diabatic feedbacks and aspects of the
TC climatology across reanalyses was not particularly clear,
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FIG. 12. Scatterplot of (a),(b) the mean LMI across all storms; (c),(d) the percentage of storms intensifying from
24 m s21 to greater than 27 m s21; (e),(f) the NTCs in the peak season; and (g),(h) the ACE in the peak season against
(left) nonnormalized and (right) normalized surface flux (stars), longwave (open circles), and shortwave (filled circles)
feedbacks, averaged over the innermost 583 58 of the box, and composited in the 24–27 m s21 bin across the strongest
storms. Each reanalysis is a different color. The two-way error bars indicate the 5%–95% confidence interval, assum-
ing a standard normal distribution, for the average feedbacks and TC metrics (there are no error bars on the percent-
age of storms metric; otherwise, if they are not visible, that means that they are very small).
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indicating that other factors also contribute to the inter-reanalysis
spread in the TC climatology, including other effects on MSE
variance not analyzed here, such as the advective term and
data assimilation tendencies, as well as other physical pro-
cesses not captured by the MSE variance budget. Despite this,
our results are useful to reanalysis developers since they quan-
tify how each reanalysis depicts surface flux and radiative feed-
backs on TCs. The large spread is also a cautionary note to
reanalysis users that reanalyses may not be trustworthy in their
representation of this budget.

As for what drives the differences in the surface flux and ra-
diative feedbacks, and, more generally, the TC representa-
tion, across the reanalyses, there are many potential sources,
including different native model resolutions, data assimilation
schemes, TC preprocessing techniques, choice of prognostic
variables and model equations, and physical parameteriza-
tions. All of these aforementioned differences in reanalyses
could imprint on the results we see in this study, though hori-
zontal resolution does not seem to explain the differences in
the TC climatology across reanalyses. Higher resolution rean-
alyses tend to simulate fewer TCs and lower ACE (Fig. S3),
which is opposite of expectations, and there are also reanaly-
ses at similar resolutions with very different TC climatologies.
There also does not appear to be a relationship between the
radiative feedbacks and resolution, though h′SEF′ is typically
larger in models of higher resolution, though this is not uni-
versally true (Fig. S15). Given the myriad differences, it is ex-
tremely difficult to attribute to any one factor why, for
example, JRA-55 has a stronger surface flux feedback than
MERRA-2. Since h′SEF′ is closely tied to the covariability of
the wind and moisture fields, if these reanalyses have different
boundary layer structures of either of these fields, due to dif-
ferent boundary layer schemes or dynamical cores, or differ-
ent parameterizations of the wind-speed dependence of
surface fluxes, that would imprint on h′SEF′. Boundary layer
temperature and moisture biases, such as the known cold bias
below 925 hPa in TC environments in ERA5 (Slocum et al.
2022), could imprint on the MSE variance budget, though it is
difficult to speculate how since the feedbacks in the MSE
variance budget depend not on absolute values of MSE or
surface or radiative fluxes but on their spatial variabilities.
The different cloud, microphysics, and radiation schemes in
each model used to create the reanalyses could influence
both the longwave and shortwave feedbacks. But beyond
such speculation, attribution would likely require parameter
perturbation experiments within the context of an individual
model. We must also consider whether the evolution of a TC
in a reanalysis product is really driven by physical processes
internal to the model or by analysis tendencies from the data
assimilation.

Future work will apply these diagnostics to GCMs from
phase 6 of the Coupled Model Intercomparison Project
(CMIP6) and high-resolution GCMs from HighResMIP
(Haarsma et al. 2016). However, the large spread in the MSE
variance budget across reanalyses, and their known biases in
representing TCs (Hodges et al. 2003; Schenkel and Hart
2012; Murakami 2014; Hodges et al. 2017; Schenkel et al.
2017; Kim et al. 2021; Bian et al. 2021; Zarzycki et al. 2021;

Jones et al. 2021) and the TC environment (Slocum et al.
2022), means that we may not be able to consider reanalyses
as the “truth” that the GCMs should be evaluated against.
The MSE variance budget seems to be relatively uncon-
strained by the assimilation of observational data (if it was,
the reanalyses should agree better), and instead reflects differ-
ences in the methods of data assimilation or numerics and
physics of the underlying models used to generate reanalyses.
A preliminary comparison of the box-average MSE variance
and the surface flux and radiative feedbacks in the reanaly-
ses to the six GCMs considered in Wing et al. (2019) indi-
cates that the GCMs fall within the range of the reanalyses,
but that the spread across the reanalyses is similar to, if not
larger than, the spread across these particular GCMs (not
shown). However, the climatological characteristics of TCs
in MERRA-2 differ from atmosphere-only runs of the same
model without data assimilation (Aarons et al. 2021) and
there are also clear differences in the MSE variance budget
terms (not shown). This indicates that at least within a given
model environment, assimilation of observations does make a
difference, though it does not necessarily improve the repre-
sentation of TCs (Aarons et al. 2021). Future work that
evaluates the MSE variance budget for TCs in GCMs
against reanalyses must thus be interpreted extremely care-
fully and should, at minimum, compare to multiple reanaly-
ses and consider the GCMs in the context of the large
reanalysis spread. Ongoing efforts to compute the MSE
variance budget in observed TCs from a combination of
satellite retrievals and dropsonde observations from air-
craft reconnaissance are a step toward providing a much-
needed true observational reference for this process-oriented
diagnostic.
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APPENDIX A

Sensitivity to Output Resolution

A complicating factor in our analysis is that the different
reanalyses have different resolutions, and their output reso-
lution may differ from the native model resolution. While
the native model resolution is known to influence TC simu-
lation by influencing which dynamics are resolved (Roberts
et al. 2020; Moon et al. 2020b), different output resolutions
may also impact the MSE variance budget diagnostics. We
investigate this by comparing the JRA-55 intensity-bin com-
posites computed from the native model resolution data

(;0.58) to that computed from data on a 1.258 3 1.258 grid
and pressure levels, available for download from NCAR’s
Research Data Archive.

The spatial structure and magnitudes of the feedbacks
are generally similar for the 1.258 and model resolution
data, though the large ĥ values are more spatially confined
in the model resolution data (see the 2D spatial view in
Fig. S16). The coarser 1.258 output resolution data cannot
capture the inner-core structure and generally underesti-
mates the radial gradient of the feedbacks, with a weaker
feedback strength in a given bin at a given radius within
;2.58 of the TC center, but a stronger feedback strength in
a given bin at a given radius further outward (Figs. A1a–c).
It fails to capture most of the reduction in the h′SEF′ term
near the TC center (Fig. A1a). The box-average MSE vari-
ance and feedbacks increase similarly with intensity for
both the 1.258 output and native model resolution data, but
the variance and feedbacks are systematically slightly
smaller with the coarser 1.258 data (Figs. A1d–f). However,
the difference in magnitude is small compared to the range
across reanalyses (Fig. 10). The different output resolutions
across reanalyses are thus not expected to be a primary fac-
tor in the differences in the MSE variance budget diagnos-
tics. The different model resolutions may, of course, still
contribute to these differences.

When comparing the MSE variance budget across models of
different resolutions, one might consider first interpolating to a
common grid. While this would eliminate output resolution as
a source of difference, there is a trade-off. If the diagnostics
are computed from coarsened data, they may underestimate
the feedbacks that are actually felt by the TCs as they are sim-
ulated at native model resolution. We therefore recommend
that quantitative comparison of terms in the MSE variance
budget is best suited to comparing models that have the same
resolution. Another factor that could be explored in the future
is the sensitivity of the MSE variance budget to the reanalyses’
effective resolutions (resolution that resolves the kinetic
energy spectrum), which varies substantially across low-resolution
models and is more consistent as the resolution increases
(Klaver et al. 2020).
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FIG. A1. Sensitivity of MSE variance and feedback calculation to output resolution. (top) Azimuthal averages of the JRA-55 intensity-
bin composites of the (a) surface flux feedback, (b) longwave feedback, and (c) shortwave feedback in the MSE variance budget. Each
line thickness is a different intensity bin. (bottom) Box averages (over all storms and the full box) of the (d) MSE variance, (e) surface
flux feedback), (f) longwave feedback, and (g) shortwave feedback in the MSE variance budget. Note that all feedbacks have different
y axes so that the difference between resolutions are visible. The solid lines are the 1.258 output resolution data and dotted lines are the
;0.58 native model resolution data. The error bars indicate the 5%–95% confidence interval, assuming a standard normal distribution.
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APPENDIX B

Sensitivity to Box Size

A potential limitation of our results is our choice to calculate
the MSE variance budget terms using anomalies from a fixed
108 3 108 box around each TC center. We test the sensitivity
of the results to the choice of box size in CFSR and find that
whether a 58 3 58, 108 3 108, or 158 3 158 box is used to com-
pute the MSE variance budget, the structure of the feedbacks
and their dependence on intensity is generally qualitatively simi-
lar, but there are substantial differences in their magnitudes.
Each feedback term gets larger in magnitude as the box size in-
creases (Fig. B1). For all box sizes, there is a negative h′SEF′

near the TC center, but the area of negative feedback decreases
in size with increasing box size (Fig. B1a, also Fig. S17). The az-
imuthal mean h′SEF′ has a similar radial structure for each
box size, with higher peak values in the larger boxes, but the
radial gradients of h′LW′ are quite different (Figs. B1a,b). For
a given intensity bin, h′LW′ decreases much more quickly with
radius for the 158 3 158 box than the 58 3 58 box (Fig. B1b).
This is also true to a lesser extent for h′SW′ (Fig. B1c).

The box-average MSE variance still increases with inten-
sity for each box size but at slightly different rates and, at a
given intensity, it is larger for larger box sizes (Fig. B1d).
Of the box-average feedbacks, h′LW′ exhibits the greatest
sensitivity to box size; its magnitude at a given intensity in-
creases with box size and its dependence on intensity differs
depending on the box size (Fig. B1e). The ratio of box av-
erage h′SEF′ to box average total radiative feedback in the
24–27 m s21 intensity bin for the 58 3 58, 108 3 108, and
158 3 158 boxes are 0.70, 1.05, and 0.62, respectively. We
expected this ratio to monotonically increase with box size,
but it is possible that making the box size either too small
or too large causes some cancellation effects between the
feedback magnitudes in the TC inner core or outer environ-
ment. Thus, the box size must be carefully considered when
computing the MSE variance budget. Future work might
test the use of a dynamic box size based on resolution or
some metric of TC size. However, since most of the reanal-
yses we use have similar output resolutions, using a fixed
box size across all datasets is not expected to significantly
impact our results.

FIG. B1. Sensitivity of MSE variance and feedback calculations to box size. (top) Azimuthal averages of the CFSR intensity-bin compo-
sites of the (a) surface flux feedback, (b) longwave feedback, and (c) shortwave feedback in the MSE variance budget. Each line thickness
is a different intensity bin. (bottom) Box averages (over all storms and the full box) of the (d) MSE variance, (e) surface flux feedback),
(f) longwave feedback, and (g) shortwave feedback in the MSE variance budget. Note that all feedbacks have different y axes so that the
difference between box sizes (different line styles) are visible. The error bars indicate the 5%–95% confidence interval, assuming a stan-
dard normal distribution.
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